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–A direct dynamical test of the sunspot-cycle is carried out which indicates that a stochastically
forced non-linear oscillator characterizes its dynamics. The sunspot series is then decomposed
into its eigen time-delay coordinates. The analysis of these coordinates reveals that the sunspot
series exhibits bistability, and suggests the possibility of modeling the solar cycle as a stochastically
and periodically forced bistable oscillator, accounting for the Poloidal and Toroidal modes of the
solar magnetic field. Such a representation of the sunspot series in terms of stochastic bistable
dynamical system enables us to conjecture stochastic resonance as the key mechanism in amplifying
the planetary influence of Jupiter on the sun, and that extreme events, due to turbulent convection
noise inside the sun, dictate crucial phases of the sunspot cycle, such as the Maunder minimum.

INTRODUCTION

Solar cycle prediction, such as forecasting the ampli-
tude and/or the epoch of an upcoming maximum, is
of great importance for several reasons such as space
weather, perhaps even earth’s climate [1]. However,
such predictions have been quite inconclusive owing to
inherent fluctuations in the time period and amplitudes
of each epoch of the solar cycle (Fig. 1). Even though
the global aspects of the solar cycle are explained by the
dynamo theory [2], the nature of the irregularities dis-
played by the sunspot time series is still being debated,
and detailed understanding of its dynamics is far from
complete.

Some past work [3, 4] has claimed evidence for the
origin of the sunspot cycle in deterministic chaos, based
on estimations of correlation dimension, Lyapunov expo-
nents, and an increase of a prediction error with a pre-
diction horizon. However, the dimension algorithms have
been found to be unreliable [5, 6] when applied to rela-
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FIG. 1. Monthly mean sunspot numbers. The dynamics caus-
ing the observed irregularity of amplitude with dominant pe-
riodicity in the time series remains unknown.

tively short experimental data, and properties consistent
with stochastic processes (colored noises) such as auto-
correlations can lead to spurious convergence of dimen-
sional estimates; similar behavior has been observed for
Lyapunov exponent estimators as well (REFERENCE?).
Moreover, the increase of a prediction error with an in-
creasing prediction horizon is not a property exclusive
for chaos. Such behavior can also be observed in systems
having a non-chaotic deterministic skeleton driven by a
stochastic/noise component. The aim of this letter is to
further investigate and characterize the role of noise and
chaos in the sunspot cycle. Our point of departure is
the so-called direct dynamical test [7–9] applied to the
sunspot time series.

DIRECT DYNAMICAL TEST

It has been challenging to differentiate between noise
and low-dimensional chaos. Reference [8] developed an
effective test for distinguishing one from the other. We
carried out this test for the sunspot series in order to
infer the underlying dynamics. The algorithm can be
summarized as follows: From the monthly-mean sunspot
time series {x(i)}, we first construct vectors {Xi} by the
time delay embedding technique [10]: Xi = [x(i), x(i +
L), ..., x(i + (m − 1)L)] , with m as the embedding di-
mension and L as the delay time. Utilizing the findings
in [4] in the context of the best values for delay time for
the attractor reconstruction from the sunspot cycle, we
choose L to be 10 in our computations. A value of 5
was used for m. We then compute the time-dependent
exponent, λ(t), as

λ(t) =

〈
ln

(
∥Xi+t −Xj+t∥
∥Xi −Xj∥

)〉
(1)

with r ≤ ∥Xi −Xj∥ ≤ r +∆r, where r and ∆r are pre-
scribed small distances. The angle brackets denote en-
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semble averages of all possible pairs of Xi and Xj . The
integer t, called the evolution time, corresponds to time
t ∗ dt. Note that, geometrically, (r, r + ∆r) defines a
shell, capturing the notion of scale. For clean chaotic
systems, the λ(t) curves first increase linearly with t un-
til some predictable time scale, tp, is reached, and flat-
tens [9] thereafter. The linearly increasing parts of the
λ(t) curves corresponding to different shells collapse to-
gether to form an envelope for such clean systems. For
noisy systems, the linearly increasing part of the λ(t)
curves, corresponding to small shells, break away from
the envelope. The stronger the noise, the more λ(t)
curves break away from the envelope. Only if the noise is
not strong enough to allow the linearly increasing parts of
the λ(t) curves, corresponding to some finite scale shells,
to collapse together, can one say that the dynamics is
chaotic. This property forms a direct dynamical test for
deterministic chaos [8]. To illustrate this more clearly for
the reader, we present a comparison of λ(t) curves for the
chaotic Lorenz-system and random noise in Fig. 2. Note
that the linearly increasing parts of the curve collapse
on each other for the Lorenz-system, whereas they break
apart in the random noise case.

Note that, the λ(t) plots give a qualitative picture of
the dynamics. In order to infer quantitative aspects of
the underlying dynamics one can evaluate the logarithmic
displacement,

D(t) = ln ⟨(∥Xi+t −Xj+t∥)⟩ = λ(t) + ln ⟨(∥Xi −Xj∥)⟩ .
(2)

Next we carry out this analysis for the monthly-mean
sunspot time-series. Fig. 3(a) shows the λ(t) expo-
nents (in the linearly increasing region) for four differ-
ent shells, and Fig. 3(b) exhibits the D(t) curves for
the same shells. Some conclusions can be made; (a)
Sunspot-series is not necessarily chaotic and the dynam-
ics is greatly influenced by noise. This can be inferred
from Fig. 3(a) as follows: If the time-series were to ex-
hibit deterministic-chaos, all the plots should have col-
lapsed over each other for the linearly increasing por-
tion. This is not the case, thereby weakening the case
for deterministic-chaos, and suggesting an important role
of noise in the sunspots-dynamics. (b) Sunspot-series
exhibits anomalous-diffusion [11]. This is exhibited in
Fig 3(b), wherein the temporal-evolution of logarith-
mic displacement is plotted. Note that this displace-
ment scales as tα, where α = 0.218, thus implying sub-
diffusion. Such a sub-diffusive scaling is observed in sys-
tems like stochastically-driven non-linear oscillators [12].
Overall, the direct-dynamical test shows that any possi-
bility of chaos is overpowered by the effect of noise in the
sunspot-series, and in a strict-sense, the sunspot-series
doesn’t exhibit deterministic-chaos, rather a stochasti-
cally driven non-linear oscillator best describes the evolu-
tion of the sunspot time-series. Observations supporting

(a)

(b)

FIG. 2. Divergence exponents, λ(t), for (a) time series for a
chaotic solution of the Lorenz system; for (b) random noise
time series. Note that the linearly increasing portion of the
plots overlap for Lorenz system exhibiting deterministic chaos
in (a), whereas the lines break apart in (b).

(a)

(b)

FIG. 3. (a) Divergence exponents, λ(t), for the sunspot
time-series in the linear-regime. Results for shells
(2−i/2, 2−(i+1)/2), with i = 7, 8, 9, 10 are shown. Other shells
have similar results. (b) Logarithmic displacement curves for
the sunspot time-series. Note the sub-diffusive scaling for the
curves.
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the argument that a (randomly or otherwise) driven non-
linear oscillator underlies the dynamics of the solar-cycle
have been made in the past [13, 14] as well, however,
as shown in [15], these relaxation-oscillator type models
couldn’t provide a complete description of the solar-cycle
dynamics. A way to characterize this stochastic oscilla-
tor is to decompose the sunspot-series into its eigen-time-
delay coordinates, inspired by Koopman operator theory,
and we describe this next.

EIGEN-TIME-DELAY COORDINATES

Consider a dynamical system of the form,

d

dt
x(t) = f(x(t)), (3)

the discretized form of which is given as,

xk+1 = F(xk) = xk +

∫ (k+1)∆t

k∆t

f(x(τ))dτ, (4)

Here x(t) ∈ Rn is the state of the system at time t
and f represents the dynamic constraints that define the
equations of motion. There are two major perspectives
for analyzing such system; (a) The traditional geometric
perspective of dynamical systems, which describes the
topological organization of trajectories of x, mediated by
fixed points, periodic orbits, and attractors of the dynam-
ics f; and (b) analyzing the evolution of measurements,
y = g(x), of the state. The later perspective was in-
troduced by Koopman in 1931 [16–18]. The Koopman
analysis relies on the existence of a linear operator K for
the dynamical system in Eq. 4, and is given by,

Kg
∆
= g ◦ F ⇒ Kg(xk) = g(xk+1). (5)

The Koopman operator K induces a linear system on
the space of all measurement functions g, and trans-
forms the finite-dimensional nonlinear dynamics in Eq. 3
to an infinite-dimensional linear dynamics in 5, and
provides a global linear representation, valid far away
from fixed points and periodic orbits. Obtaining a finite-
dimensional approximation of the Koopman operator is
challenging, and a Koopman-invariant measurement sys-
tem is key for such a realization. Eigen-time-delay co-
ordiantes have been shown to approximate a Koopman-
invariant measurement system, and have been used to
construct best-fit linear models for various dynamical
systems in the past [19, 20] using simple linear regres-
sion. These eigen-time-delay coordinates may be ob-
tained from monthly mean sunspot number time series
{x(t1), x(t2), x(t3), . . .}, by taking a singular value de-
composition of the Hankel matrix H,

H =


x(t1) x(t2) . . . x(tp)
x(t2) x(t3) . . . x(tp+1)
...

...
. . .

...
x(tq) x(tq+1) . . . x(tm)

 = UΣV∗ (6)

An important hyperparameter above is the number of
delays q, which is chosen such that the delay duration
D = (q− 1)∆t is large enough to capture a sufficient du-
ration of the oscillation, where ∆t is the sampling period.
As a rule [21] of thumb, q should be chosen such that
D = T , where T is the time period of the signal. We
choose q such that D is slightly greater than 11 years,
which is the average time-period for the sunspot-series.
Eq. 6 yields a hierarchical decomposition of the matrix
H into eigen-time-series given by the columns of U and
V. These columns are ordered by their ability to express
the variance in the columns and rows of the matrix H,
respectively. The relative importance of each of these
columns is expressed by the eigen-value diagonal matrix
Σ containing σ2

i .
Fig. 4a shows the eigen-value spectrum, which makes

it clear that the dynamics underlying the solar-cycle is
low-dimensional given that only the first 2-3 eigenvalues
are significant. The columns of V provide a time series of
the magnitude of each of the columns of UΣ in the data.
The time-series for the columns of V corresponding to
dominant eigenvalues, or the leading delay-coordinates,
is shown in Fig. 4b. The first mode V1, turns out to be
an amplitude envelope of the original sunspot-series. The
other two modes, besides having some phase lag, appear
identical to each other. A careful look will convince one
that these modes are essentially periodic-signals, with
their amplitudes modulated by V1. Fig. 5(a) shows the
distribution of different values in the time-series of V1.
The bimodal nature of the histogram suggests bistability
in the sunspot-series. These observations lead us to pro-
pose the following one-dimensional non-linear oscillator
model for the sunspot-series,

dx

dt
= −∂U

∂x
+ F (t) +

∑
i

Aisinωit (7)

where the first term on the right-hand side is the restor-
ing force, with U = −αx2 + βx4 as the quartic-potential
function corresponding to a bistable-system. Along with
a periodic external forcing, a random component F (t)
is also present. The nature of this noise-term (to first
order) can be inferred by analyzing the time-derivative
of the eigen-time-series V1 (Eq. 7 without periodic forc-
ing). The pdf of the derivative of this delay-coordinate
is exhibited in Fig. 6(a). The same pdf is also shown
on a scale where Gaussian-distribution is a straight line
(probability-paper scale) in Fig. 6(b). The deviation
from the straight line shows that the nature of noise-
term driving the bistable-dynamics proposed above is
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FIG. 4. (a) Distribution of the coordinate V1. Note the bi-
modal nature of the distribution. This implies bistability and
the possibility of the underlying dynamics being governed by
a forced potential-well system; (b) The first three dominant
delay-coordinates (V1,V2,V3). Note that V1 is amplitude en-
velope of the sunspot-series, whereas V2 and V3 are periodic
signals with their amplitudes modulated by signal V1

non-Gaussian and heavy-tailed. The bistable dynam-
ics underlying the sunspot-series would account for the
Poloidal and Toroidal components of the solar magnetic-
field. Finally, note that Eq. 7 can also exhibit Stochastic
Resonance, wherein a sub-threshold periodic signal can
be entrained in the dynamics because of the additive role
of noise. Fig. 5b shows the spectrum for the sunspot-
cycle. Such a spectra, noise-background with peaks at
drive frequencies and its harmonics, is characteristic for
systems exhibiting Stochastic resonance [22]. The ratio of
the eigenvalues corresponding to stochastic and periodic
components in the present case is around 2.5, highlight-
ing the weak contribution from the periodic-component
of the forcing, and dominating role of the noise-term.
Because of the limited amount of data for the sunspot-
series, Standard analysis for stochastic resonance, such
as residence-time-distribution, doesn’t yield any mean-
ingful information. That notwithstanding, if stochastic-
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FIG. 5. (a) Distribution of the coordinate V1. Note the
bimodal nature of the distribution. This implies bistability
and the possibility of the underlying dynamics being governed
by a forced quartic-potential-well system; (b) Spectra of the
sunspot-series.

resonance occurs in the above model for the sunspot-
cycle, it could serve as a mechanism for amplification of
weak planetary influences on the sun.

PLANETARY INFLUENCE ON THE SOLAR
CYCLE

There is a striking similarity between the average rev-
olution time period of the Jupiter (around 11.86 years)
and the (noisy) periodicity of the sunspot-cycle. Given
this similarity, the possible role of (very-weak) planetary-
forcing by Jupiter in influencing the solar magnetic-cycle
cannot be ignored, and has been studied a bit in the
past [23–26]. However, it is not clear how such weak plan-
etary forcing could make itself so dominantly evdient in
the solar-cycle. One possible mechanism is Stochastic-
resonance [22], wherein a very weak external periodic
signal is entrained in the dynamics at some optimal
level of noise inside the system. A system exhibiting
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(a)

(b)

FIG. 6. (a) Distribution of the time-derivative of the eigen-
delay-coordinate V1; (b) Same distribution on a probability-
paper scale

Stochastic resonance should typically be bistable, and
bistability in the sunspot-series is what we reported in
this paper. Thus, in light of our findings, stochastic
resonance appears to be a plausible mechanism of how
the weak-periodic planetary forcing from Jupiter could
influence the solar-cycle, and this effect can be natu-
rally incorporated in models of the type in Eq. 7. Note
that the bistability reported in this paper would corre-
spond to the poloidal and toroidal components of the
solar magnetic-field. In fact, many state of the art mod-
els in solar-dynamo theory are based on transformations
of the toroidal components to the poloidal components
of the magnetic-field, and the other way around. See
[27–29] for more details. Further note that, the noise
in model 7 would ofcourse correspond to the noise of
turbulent-convection in the sun.

MAUNDER-MINIMUM AS RARE EVENTS

We saw through Fig.6b that noise driving the bistable-
dynamics is heavy-tailed in the sunspot cycle, and thus
rare-events may play an important role in the evolu-

tion of the sunspot-cycle. Consider, for instance, Maun-
der minimum [30, 31], a phase of grand minima in the
sunspot-cycle during 1645–1715, when the solar activity
was strongly reduced. It has been established through
an analysis of geological records that several Maunder
minimum like periods have occurred in the past. It may
well turn out that rare-events in the stochastic forcing,
representing the extreme events in the turbulent convec-
tion, drive such phases. For instance, an extreme event
can confine the dynamics to the potential well corre-
sponding to Poloidal component of the magnetic field.
This will result in significant reduction in the toroidal
component (which directly corresponds to the number of
sunspots(see [28])) of the magnetic field, and hence in
the number of sunspots observed. A similar argument
can be made to explain the phase where the values of
maxima were very high in the sunspot cycle. Such rare
event driven dynamics have been shown to play an im-
portant role in the dynamics of climate [32], transition
to turbulence in turbulent-pipe-flows [33], and in aero-
dynamic bifurcations [34], among others.

CONCLUSIONS

We have shown that the sunspot-series exhibits bi-
stability. First, a direct-dynamical test [8] of the sunspot-
series indicated that a forced non-linear oscillator governs
its dynamics. After that, an analysis of the dominant
eigen-time-delay coordinates of the sunspot-series was
carried out, and we concluded that the aforesaid oscil-
lator is likely to be a one-dimensional bi-stable oscillator
driven by heavy-tailed random forcing and weak periodic-
forcing. Such a stochastic bistable dynamical system rep-
resentation of the sunspot-series enabled us to conjecture
stochastic resonance as the key mechanism in amplify-
ing the planetary influence of Jupiter on the sun, and
that rare-events in the turbulent-convection noise inside
the sun could dictate crucial phases of the sunspot-cycle,
such as the Maunder minimum. Our findings strongly en-
courage modeling attempts of the solar-cycle that incor-
porate the possibility of nonlinear effects such as stochas-
tic resonance [35].
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